

INTRODUCTION TO QUANTUM MECHANICS

- **4.1** Preliminaries: Wave Motion and Light
- **4.2** Evidence for Energy Quantization in Atoms
- **4.3** The Bohr Model: Predicting Discrete Energy Levels in Atoms
- **4.4** Evidence for Wave-Particle Duality
- **4.5** The Schrödinger Equation
- **4.6** Quantum mechanics of Particle-in-a-Box Models

1

Nanometer-Sized Crystals of CdSe

Key question 1: what is the origin of line spectra?

Key question 2: can we apply classical theory to atoms or molecules? If not, what is an alternative?

> **KAIST CHEMIS**

4.1 PRELIMINARIES: WAVE MOTION AND LIGHT

- **amplitude** of the wave: the height or the displacement
- **wavelength,** λ : the distance between two successive crests
- **frequency, v**: units of waves (or cycles) per second (s⁻¹)

Electromagnetic Radiation

- A beam of light consists of oscillating **electric and magnetic fields** oriented perpendicular to one another and to the direction in which the light is propagating.
- **Amplitude** of the electric field

$$
E(x,t) = E_{\text{max}} \cos[2\pi(x/\lambda - vt)]
$$

- **The speed, c, of light** passing through a vacuum,

 $c = \lambda v = 2.99792458 \times 10^8$ ms⁻¹

is a universal constant; the same for all types of radiation.

 $\overline{7}$

reflected by mirrors refracted by a prism

Interference of waves

- When two light waves pass through the same region of space, they interfere to create a new wave called the **superposition** of the two.

4.2 EVIDENCE FOR ENERGY QUANTIZATION IN ATOMS

Blackbody radiation

- Every objects emits energy from its surface in the form of thermal radiation. This energy is carried by electromagnetic waves.
- The distribution of the wavelength depends on the temperature.
- The maximum in the radiation intensity distribution moves to higher frequency (shorter wavelength) as T increases.
- The radiation intensity falls to zero at extremely high frequencies for objects heated to any temperature.

12

Ultraviolet catastrophe

- From classical theory,
$$
\rho_T(v) = \frac{8\pi k_B T v^2}{c^3}
$$

 $\rho_{\rm T}(\nu)$: intensity at ${\rm v,~k_{\rm B}}$: Boltzmann constant, T: temperature (K)

- Predicting **an infinite intensity at very short wavelengths**
	- \leftrightarrow The experimental results fall to zero at short wavelengths

Plank's quantum hypothesis

- The oscillator must gain and lose energy in quanta of magnitude hv, and that the total energy can take only discrete values:

 ε_{osc} = nh_v **n** = 1, 2, 3, 4, \cdots

Plank's constant h = $6.62606896(3) \times 10^{-34}$ J s

- Radiation intensity $\Big|$

$$
\rho_T(\nu) = \frac{8\pi h\nu^3}{c^3} \frac{1}{e^{h\nu/k_BT}-1}
$$

When $h\nu/k_BT \ll 1$ (or T $\rightarrow \infty$),

 $\rho_{T}(\nu)=\frac{8\pi h\nu^{3}}{c^{3}}$ c^3 1 $\left[1+\frac{h\nu}{\hbar}\right]$ $\frac{1}{k_B T}$]–1 $=\frac{8\pi k_B T v^2}{r^3}$ $\frac{c_{B}T}{c^{3}}$ = the classical result

- **Physical meaning of Plank's explanation**
	- 1. The energy of a system can take only discrete values.

- 2. A quantized oscillator can gain or lose energy only in discrete amounts $\Delta E = h v$.
- 3. To emit energy from higher energy states, T must be sufficiently high.

Light from an electrical discharge

 (a)

 (b)

Ar

 (c)

Spectrograph

Balmer series for hydrogen atoms

$$
v = \left[\frac{1}{4} - \frac{1}{n^2}\right] \times 3.29 \times 10^{15} \text{ s}^{-1} \quad \text{n = 3, 4, 5, 6} \cdots
$$

Bohr's explanation

The frequency of the light absorbed is connected to the energy of the initial and final states by the expression

$$
v = \frac{E_f - Ei}{h}
$$
 or $\Delta E = h v$

4.3 THE BOHR MODEL: PREDICTING DISCRETE ENERGY LEVELS IN ATOMS

- Starting from Rutherford's planetary model of the atom
- **the assumption** that an electron of mass m_e moves in a circular orbit of radius r about a fixed nucleus

Classical theory states are not stable.

- The total energy of the hydrogen atom: kinetic + potential

$$
E = \frac{1}{2} m_e v^2 - \frac{Ze^2}{4\pi \varepsilon_0 r}
$$

$$
\frac{Ze^{2}}{4\pi\varepsilon_{0}r^{2}} \xrightarrow{m_{e}\frac{V^{2}}{r}} \frac{1 - \text{Coulomb force} = \text{centrifugal force}}{4\pi\varepsilon_{0}r^{2}} = m_{e}\frac{V^{2}}{r}
$$

- **Bohr's postulation**: angular momentum of the electron is quantized.

$$
L = m_{e}vr = n\frac{h}{2\pi} \quad n = 1, 2, 3, ...
$$

- Radius
$$
r_n = \frac{\epsilon_0 n^2 h^2}{\pi Z e^2 m_e} = \frac{n^2}{Z} a_0
$$

\n a_0 (Bohr radius) = $\frac{\epsilon_0 h^2}{\pi e^2 m_e} = 0.529 \text{ Å}$
\n- Velocity $v_n = \frac{nh}{2\pi m_e r_n} = \frac{Ze^2}{2\epsilon_0^2 nh}$
\n- Energy $E_n = \frac{-Z^2 e^4 m_e}{8\epsilon_0^2 n^2 h^2} = -R \frac{Z^2}{n^2}$
\n $n = 1, 2, 3, ...$
\nR (Rydbergs) = $\frac{e^4 m_e}{8\epsilon_0^2 h^2} = 2.18 \times 10^{-18} \text{ J}$

Ionization energy: the minimum energy required to remove an electron from an atom

In the Bohr model, the $n = 1$ state \rightarrow the $n = \infty$ state

$$
\Delta E = E_{\text{final}} - E_{\text{initial}} = 0 - (-2.18 \times 10^{-18} \text{ J}) = 2.18 \times 10^{-18} \text{ J}
$$

 $IE = N_A \times 2.18 \times 10^{-18}$ J = 1310 kJ mol⁻¹

EXAMPLE 4.3

Consider the $n = 2$ state of Li²⁺. Using the Bohr model, calculate r, V, and E of the ion relative to that of the nucleus and electron separated by an infinite distance.

$$
r = \frac{n^2}{Z}a_0 = \frac{4}{3}a_0 = 0.705 \text{ Å} \qquad v = \frac{nh}{2\pi m_e r_n} = \frac{2h}{2\pi m_e r_n} = 3.28 \times 10^6 \text{ m s}^{-1}
$$

\n
$$
E_2 = -R\frac{Z^2}{n^2} = -R\frac{9}{4} = -4.90 \times 10^{-18} \text{ J}
$$

Atomic spectra: interpretation by the Bohr model

- Light is emitted to carry off the energy hv by transition from E_i to E_f .

$$
hv = \frac{-Z^2 e^4 m_e}{8\epsilon_0^2 h^2} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2} \right)
$$

- Lines in the emission spectrum with frequencies,

$$
v = \frac{-Z^2 e^4 m_e}{8\epsilon_0^2 h^3} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right) = (3.29 \times 10^{15} \text{ s}^{-1}) Z^2 \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right)
$$

n_i > n_f = 1, 2, 3, ... (emission)

- Lines in the absorption spectrum with frequencies,

$$
v = \frac{-Z^2 e^4 m_e}{8\epsilon_0^2 h^3} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right) = (3.29 \times 10^{15} \text{ s}^{-1}) Z^2 \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)
$$

n_f > n_i = 1, 2, 3, ... (absorption)

25

4.4 EVIDENCE FOR WAVE-PARTICLE DUALITY

- The particles sometimes behave as waves, and vice versa.

The Photoelectron Effect

- A beam of light shining onto a metal surface (photocathode) can eject electrons (photoelectrons) and cause an electric current (photocurrent) to flow.

Frequency of light on cathode

General Chemistry I

Number of electrons

CHEMISIRY

- Einstein's theory predicts that the maximum kinetic energy of photoelectrons emitted by light of frequency v

 $E_{\text{max}} =$ 1 $\frac{1}{2}$ m v_e^2 = hv - Φ

- Workfunction of the metal, Φ , represents the binding energy that electrons must overcome to escape from the metal surface after photon absorption.

Standing Wave

- **Standing wave** under a physical boundary condition

> $n\frac{\lambda}{2}$ 2 $= L$ n = 1, 2, 3, ...

- **n = 1**, fundamental or first harmonic oscillation
- **node**, at certain points where the amplitude is zero.

De Broglie Waves

ℎ 2π

- The electron with a circular standing wave oscillating about the nucleus of the atom.

$$
n\lambda = 2\pi r
$$
 $n = 1, 2, 3, ...$

From Bohr's assumption,

$$
\lambda = \frac{h}{m_e v} = \frac{h}{p}
$$

EXAMPLE 4.3

Calculate the de Broglie wavelengths of an electron moving with velocity 1.0 x 10 6 m s⁻¹.

7.3 Å

General Chemistry I

 $m_e^{\mathcal{v}}$

 $2\pi r = n \frac{h}{m}$

Electron Diffraction

- An electron with kinetic energy of 50 eV has a de Broglie wave length of 1.73 Å, comparable to the spacing between atomic planes.

$$
T = eV = \frac{1}{2}m_e v^2 = \frac{p^2}{2m_e} \qquad p = \sqrt{2m_e eV} \qquad \lambda = h/\sqrt{2m_e eV} = 1.73 \text{ Å}
$$

- The diffraction condition is

$n\lambda = a \sin \theta$

- For two dimensional surface with a along the x-axis and b along the y-axis

 $n_a \lambda_a = a \sin \theta_a$ $n_b \lambda_b = b \sin \theta_b$

4.5 THE SCHRÖDINGER EQUATION

- \triangleright wave function (ψ , psi) mapping out the amplitude of a wave in three dimensions; it may be a function of time.
- The origins of the Schrödinger equation:

If the wave function is described as $\psi(x) = A \sin \frac{2\pi x}{\lambda}$,

$$
\frac{d^2\psi(x)}{dx^2} = -A\left(\frac{2\pi}{\lambda}\right)^2 \sin\frac{2\pi x}{\lambda} = -\left(\frac{2\pi}{\lambda}\right)^2 \psi(x)
$$

$$
= -\left(\frac{2\pi}{h}p\right)^2 \psi(x) \qquad \Longleftrightarrow \qquad \lambda = \frac{h}{p}
$$

$$
-\frac{h^2}{8\pi^2 m} \frac{d^2\psi(x)}{dx^2} = \frac{p^2}{2m} \psi(x) = \text{Tr}\psi(x) \qquad \Longleftrightarrow \qquad T = \frac{p^2}{2m}
$$

$$
-\frac{h^2}{8\pi^2 m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x) \qquad \Longleftrightarrow \qquad E=T+V(x)
$$

- **► Born interpretation**: probability of finding the particle in a region is proportional to the value of \mathbb{V}^2
- \triangleright **probability density (P(x))**: the probability that the particle will be found in a small region divided by the volume of the region

 $P(x)dx =$ probability

1) Probability density must be normalized.

$$
\int_{-\infty}^{+\infty} P(x)dx = \int_{-\infty}^{+\infty} [\psi(x)]^2 dx = 1
$$

- 2) P(x) must be continuous at each point x.
- 3) $\psi(x)$ must be bounded at large values of x.

$$
\psi(x) \to 0
$$
 as $x \to \pm \infty$

$$
\begin{matrix}\n\frac{1}{5} \\
\frac{1}{5} \\
\frac
$$

 \sim

 $\overline{}$

boundary conditions

How can we solve the Schrödinger equation?

$$
-\frac{h^2}{8\pi^2m}\frac{d^2\psi(x)}{dx^2}+V(x)\psi(x)=E\psi(x)
$$

The allowed energy values **E** and wave functions $\psi(x)$

From the boundary conditions, energy quantization arises. Each energy value corresponds to one or more wave functions.

The wave functions describe the distribution of particles when the system has a specific energy value.

4.6 QUANTUM MECHANICS OF PARTICLE-IN-A-BOX MODELS

Particle in a box

- Mass m confined between two rigid walls a distance L apart $-\psi = 0$ outside the box at the walls (boundary condition)

- Inside the box, where $V = 0$,

$$
-\frac{h^2}{8\pi^2 m}\frac{d^2\psi(x)}{dx^2} = E\psi(x) \qquad \qquad \frac{d^2\psi(x)}{dx^2} = -\frac{8\pi^2 mE}{h^2}\psi(x)
$$

- From the boundary conditions, $\psi(x) = 0$ at $x = 0$ and $x = L$.

$$
\psi(x) = A \sin kx;
$$
 $\psi(L) = A \sin kL = 0$
\n $kL = n\pi$ n = 1, 2, 3, ...
\n $\psi(x) = A \sin \left(\frac{n\pi x}{L}\right)$ n = 1, 2, 3, ...

- For the normalization,

$$
A^{2}\int_{0}^{L} \sin^{2}\left(\frac{n\pi x}{L}\right) dx = A^{2}\left(\frac{L}{2}\right) = 1 \qquad A = \sqrt{\frac{2}{L}}
$$

$$
\psi_{n}(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right) \qquad n = 1, 2, 3, ...
$$

- The second derivative of the wave function:

$$
\frac{d^2\psi_n(x)}{dx^2}=-\left(\frac{n\pi}{L}\right)^2\psi_n(x)=-\frac{8\pi^2mE}{h^2}\psi(x)
$$

$$
E_n=\frac{n^2h^2}{8mL^2} \qquad n = 1, 2, 3, ...
$$

Energy of the particle is quantized!

 $\psi_n(x)$ has n - 1 nodes, and # of nodes increases with the energy.

 (b)

Key question 1: what is the origin of line spectra?

Key question 2: can we apply classical theory to atoms or molecules? If not, what is an alternative?

> **KAIST CHEMIS**

For Chapter 4,

- Problem Sets
	- $: 20, 28, 38, 50, 58$
- Chapter Summary (Choose one)
	- : Wave-particle duality, Schrödinger's and Bohr's interpretation on the wavefunction

